
a.s.n.
BASIC/$ 3.1 COMPILER
BY: BILL STOCKWELL

FOR MOD I AND MOD Ill

BASIC/S@
A BASIC COMPILER

FOR MOD I & Ill

PUBLISHED BY:
QUALITY SOFWARE DIST.
11500 STEMMONS EXPWY. SUITE 104
DALLAS, TX 75229

a.s.11
BASIC/ S 3.1 COMPILER
BY: BILL STOCKWELL

FOR MOD I AND MOD Ill

BASIC/S®
A BASIC COMPILER

FOR MOD I & Ill

PUBLISHED BY:
QUALITY SOFWARE DIST.
11500 STEMMONS EXPWY. SUITE 104
DALLAS, TX 75229

BASIC/S 3.1 Documentation PAGE 1

*
* BASIC/S COMPILER *
* (C) 1981 by Bill Stockwell and QSD *
* -version 3.1 for Mod I and III- *
* -All Rights Reserved- *
* Published by: Quality Software Distributors/ Dallas,Tx *
* * * * * * * * * * * * * * • * * * * * * * * * • * * * * * *

INTRODUCTION:

BASIC/S is a BASIC program which compiles a subset of TRS-80(c)
Disk Basic into Z80 machine code. The machine code thus created may be
saved on disk as a command file. The program is easy to use, and may be
run under almost any Mod I/Mod III DOS.

GETTING STARTED:

-- MOD I

Boot up the disk you recieved with this package. It will then prompt
you for a destination drive. This can be drive 0,1,2, or 3. Insert a
SYSTEM disk of your Choice (LOOS, TRSDOS, Newdos, Newdos/80, DOSPLUS, or
VTOS). You may use a formatted disk if you wish also, as long as you
have a more than one drive, (one to put the SYSTEM in). Answer the
prompts you see on the monitor, and in just a few moments you will have
BASIC/S installed on the SYSTEM of your choice. It is VERY easy to do.
Your destination disk MUST be formatted or be a SYSTEM disk?! The only
files that you actually need to copy over to use the compiler are
BASIC/Sand COMPILER/DAT. The other files are either utilities or
example files for you to compile. The reason we mention this is that not
all of the files will fit on one 35/40 track single density disk, if all
you have is one drive, Our loader program (by Kim Watt), is intelligent
enough, however, to sense that you do not have enough room! It then will
allow you to selectivly place the files where you want them.

If you are using a ONE DRIVE SYSTEM (single density 35/40 track), we
suggest that you prepare two SYSTEM disks that have been "stripped"
down. Transfer BASIC/S to one of them, and everything else to the other
disk. When you want to compile one of your own programs, place it on a
system disk along with COMPILER/DAT. Load your first disk that has
BASIC/S on it. Once BASIC/Sis in memory and running, you may switch
diskettes, Remember •••• COMPILER/DAT MUST BE ON-LINE AT ALL TIMES WHILE
COMPILING!

BASIC/S 3.1 Documentation

-- MOD III --

PAGE 2

This disk is in Model I single density format. Simply place the disk you
have recieved in DRIVE 1, and use CONVERT, to "convert" the disk to Mod
III format (TRSDOS 1.1 - 1,3) lf you are using DOSPLUS, follow their
respective directions for •converting• over. With LDOS 5,1/II!, use the
REPAIR command, and this disk will .be directly readable by LDOS, even
though it is in Single Density. You may then COPY them over. REPAIR :1
{ALIEN). Easy to do! There is plenty of room on a Mod III 40 track
double density diskette for the whole set of programs, although
remember •••• all you REALLY need on the BASIC/$ disk that you make for
day to day use is BASIC/$ and COMPILER/DAT.

Getting Started Using BASIC/$:

IMPORTANT!! There is a variable in BAS!C/S, in the very first line,
which tells BASIC/S what disk operating system you are using. currently,
this is used so that LOF calculations will be done properly ie when
you compile a program that does an LOF calculation, it is important for
the compiler to know what DOS is being used so that this calculation
will be done properly. (The assumption is that you will run your /CMD
files under the same system that they were compiled on. tf this is not
true, you need to change the variable as explained below and recompile
under the other DOS). The variable in question is KS, and is found at
the end of line 15 of BASIC/S. It is now set as KS= 0, This is the
correct setting for all OOS's EXCEPT for DOSPLUS(c) and LDOS(c). KS
should be set to four (4) if you are using DOSPLUS, and to five (5) for
LOOS. Be certain to make this change in your copy of BASIC/S before
continuing, ONLY IF YOU ARE USING ONE OF THESE SYSTEMS! l

Edit Line 15, end of line: (now says, :KS=0)

Dosplus - :KS=4 LOOS - :KS=5

On the disk you receive, there will be just one copy of BASIC/$, one
of COMPILER/DAT, and some supplementary demo and utility files. Copy
these to a disk of your own,

It is a good idea at this time to compile one of the sample
programs on the disk. SHELL/BAS, SELECT/BAS, LOOK/BAS, SPACEWAR/BAS,
and COMPARE/BAS are all BASIC/S compilable. SHELL/BAS is a Shell
Metzner sort program which will sort an ASCII sequential disk file of
up to 79 strings; after you compile it, you invoke it via SHELL
OUTPUT=!NPUT from DOS READY mode, where INPUT is the file you want to
sort, and OUTPUT is a new file which you want the sorted file to be
written to. Don't try to run SHELL/BAS from BASIC (as is). It checks
the nos command buffer at 4318H for the file specifications, which
will not be meaningful from BASIC. TEST/DAT is a file for SHELL to
sort. After compiling SHELL/BAS execute the /CMD file via SHELL
OUT=TEST/DAT (where OUT is your output file). To compile SHELL/BAS, you
should get into Basic and RUN"BASIC/S", making sure that COMPILER/DAT
and SHELL/BAS are on line when· BASIC/S asks "Files, options ?",
respond with:

SHELL/BAS,SHELL/CMD,,56000 <enter>

BASIC/S 3,1 Documentation PAGE 3

This way, your command file will be placed into high memory, making room
for a string array of dimension 79 (T$) in low memory. If you do not
specify a starting address (which you normally wouldn't), it will
default to 5200H, which means that the T$ array will be placed in high
memory, where there is room for only 37 strings (and that's counting all
the way up to FFFFH !). No problem if your file is no more than 37
strings long AND you have no high memory drivers in place; otherwise •••
See below for more information on running BASIC/S.

SELECT is a program for making small (selective) zaps to COMPILER/DAT
(the module which the compiler uses to get most of the object code
which is used to create your /CMD files). Practice using SELECT only
on a COPY of COMPILER/DAT!! You will be told when, if, and how to use
it if it ever becomes necessary. LOOK allows you to "look" at
selected records in COMPILER/DAT without changing them, in order to
verify a zap for example. COMPARE/BAS allows you to compare 2 files to
see if they are the same.

SPACEWAR/BAS is a fast paced, real time shoot the Klingons game. You can
run it in Basic or as a /CMD file after you compile it, but it runs MUCH
faster compiled!

For the most part, these five programs allow you to
with the rather restrictive syntax of BASIC/S.

become familiar

The version of BASIC which is supported is a subset of Disk Basic,
Only simple expressions and variable names are allowed, but most of
the features and built~in functions of Level II are implemented, along
with the essential elements of sequential and random disk I/0.

Note: Unlike regular BASIC, programs compiled by BASIC/S do NOT have
any initialization of variables done. Thus numeric variables do not
start out as zero, or strings as null. (See the CLEAR statement,
however). One advantage of this approach is that one compiled program
can invoke another (using the RUN statement) and all variables will be
preserved.

Use of constants in BASIC/S is somewhat restricted; many statements
allow (real or integer) constants; most statements do NOT allow string
constansts. See the section below on the individual statements for more
details,

You may have multiple statements per line; the only restriction
here is that IF, GOTO, and GOSUB statements must begin the line they
are on. Spacing is critical when writing a program to be compiled by
BASIC/S; in general, use spaces only to separate keywords from
identifiers (FOR N%~A% TO B% rather than FOR N%~A%TOB%).

Look over some of the sample programs
statements are to be coded. The syntax must

on the disk to see how
be followed ••••

-------> EXACTLY!! <-------
The compiler allows the following variable names (all single
letters): integers A% thru Z%, reals A-Z, and strings A$ thru Z$.
Also, you may dimension arrays of any of these three types, and your
array names can be any length, with every character significant.

BASIC/S 3.1 Documentation PAGE 4

See the DIM statement for more on this,

BAS!C/S does NOT allow free conversion between real and integer
variables - you MUST use the built-in functions CINT and CSNG in order
to convert between them, See below.

REQUIREMENTS :

A TRS-80(c) Mod r or III with at least one drive and 48K.
Repeat ••• 48K.

RUNNING THE PROGRAM!

Load BASIC (whatever DOS you are using), no need to set memory size, and
RUN"BASIC/S". Be sure you have set KS if you are using LDOS or Dosplus,
Be sure COMPILER/DAT is on line, as well as the program you wish to
compile (saved in ASCII!),
REPEAT •••• your program to compile MUST be saved in ASCII!

e.g. SAVE*FlLENAME/BAS",A <enter>

(the /BAS extension is NOT required)

Now BASIC/Swill ask:

Files, options?

The typical response will be in the form:

SOURCE,OBJECT

e.g. TEST,TEST/CMD where TEST is the name of the ascii Basic program you
want to compile, and TEST/CMD is the name of the load module you want to
create. You may specify drive specs after either file name. It ls best
if the OBJECT file does not already exist, If it does exist, RASIC/S
will kill it before continuing. No big deal, but it takes a little
longer,

Two other parameters may be specified here. The first will produce
output to the system line printer (in the form of source code and
errors), while the second will tell BASIC/S where the load module's
start point is to be. To specify line printer output, just put a* (or
*PR, or *pr, or *anything) as the third parameter. The address, if
present, should be a decimal integer in the fourth position. It may be
positive or negative - Basic/swill respond correctly either way, Thus,
complete syntax to the "Files?" question is:

SOURCEF!LE,OBJECTFILE,<*PR>,<ADDRESS>

where the brackets "< >" are NOT to be typed, but indicate optional
entries. If no printer output is wanted, but an address is to be
specified, then the third parameter should be null - ie, present, but

BASIC/S 3.1 Documentation PAGE 5

null or blank as indicated by two adjacent commas.

TEST/BAS,TEST/CMD:l,,<ADDRESS>

The compiler gets much of the data needed to compile your program from
a random access disk file (COMPILER/DAT). Be sure this file is on line
when you use BASIC/S.

Note:
When running BASIC/S compiled programs on a Mod III using Mod III
TRSDOS,
you must execute the /CMD files BASIC/S creates from BASIC -
enter the program from BASIC in the following way:

(from BASIC) CMD"I" ,"PROGNAME/CMD" <enter>
Actually, this is not always necessary, but for some unknown
reason, BASIC/S /CMD files sometimes crash when exceuted from
DOS READY under Mod III TRSDOS, whereas they do just fine when
run from BASIC like this. NO other DOS, Mod I or III, has this
restriction.

THE BASIC/S SUBSET (Statements supported under BASIC/S) :

PRINT

LPRINT

INPUT

followed by a SINGLE variable name, or an expression in
quotes, Thus":

PRINT A% or
PRINT"Message•

Also,
printed

you may use a semi-colon after anything being
in order to suppress the carriage return.

PRINT@ is also supported -- just set
variable to the value of the location to
at, and you may then use any of the above
it. Thus

PRINT@N%,"TRS-80";

any integer
be printed
forms with

Syntax for LPR!NT is in every way the same as for
PRINT, except of course that LPRINT@ has no meaning.

You may input a single variable, of any type. You may
not input a list of variables, but INPUT•PROMPT";A is
supported (or A%, or A$). Note: Spacing is important
in BASIC/S. Do not run keywords and variable names

BASIC/S 3.1 Documentation PAGE fi

together -- use a single space in between them.
When executing a Basic/s compiled program, if input
is requested, hitting the <break> key will cause an
exit to DOS READY.

IMPORTANT: When inputting floating point
variables, you MUST use a decimal point (even if the
number is a whole number). Also, you may not use 'E'
notation on input. If in answer to an input prompt, you
hit <Enter> only, then the variable being inputted
remains unchanged and the program continues (just like
regular BASIC -- and this holds regardless of variable
type (integer, real or string)).

LINE INPUT

RUN A$

CLEAR

GOTO ln

LINE INPUT from the keyboard is supported. Syntax is exactly
as it is in BASIC. You can even make LINEINPUT one word
if you like. You may LINE INPUT a real or an interger variable
if you wish, although this would not work in BASIC.

e,g • LINE INPUT A$ or
LINE !NPUT "Prompt";A$ (just like in BASIC)

This statement allows you to set a string (A$ in this
case) to any DOS command, or the name of a command file
you wish to invoke, and to exit the current program and
have that command executed. Do NOT say RUN"PGMtt; this
will be not be correctly compiled! Also, RUN by itself
is incor:rect.

This statement, with or without an argument, will cause
BASIC/S variables to be zeroed out. It depends on where
your /CMD file starts; if your /CMD file is in low
memory, then all memory from 41216 (decimal) up to
HIGH$ will be zeroed out, while otherwise 5200H up to
D6D8H is zeroed out. This makes sure that your /CMD
file itself will never be affected, but that your
variables will be zeroed. This works equally well on
cha Mod I or the Mod III - Basic/a knows which machine
you are running it on, and will use the correct HIGHS
for your machine. DATA will also be cleared, and an
automatic RESTORE done so that the DATA pointer will be
correct.

The GOTO statement. Do not space between the GO and the
TO. DO space between the GOTO and the line number.

BASIC/S 3.1 Documentation

GOSUB ln

DEF FN

The standard GOSUB statement. Be sure your GOSUB's and
RETURNS match up properly, or your /CMD file may crash.

This statement works almost exactly as in BASIC, the
only limitations being that the right hand side must be
already handleable by BASIC/Sas in a normal assignment
statement, and also only one argument is allowed. Thus
it would be most useful in the case of the target
variable being real, with the right hand side a real
expression (see the section on assignment statements).
But the argument and the target may be any type (real,
integer, or string), Although only one argument is
allowed, you may use any other variables you like on
the right hand side -- but they won't be dummy.
Note : Constants may be used (real and integer,
anyway).

READ/ DATA/ RESTORE

RESTORE

IF

Your program may have DATA statements, containing
integer constants only (as in DATA 1,2,3) -- in all of
your DATA statements you can have a total of 383
integers (no more). It is important that these DATA
statements come before the READ statement(s} that are
to access them (physically before, that is) -- the
compiler generates code to place the data in memory
when the DATA statements are encountered. Syntax for
the READ statement is READ N% -- you can read only a
single integer variable, which would normally be done
in a FOR/TO loop. One big use for this is to poke DATA
for a USR routine into memory. Before BASIC/Sallowed
READ/DATA, this process was rather clumsy.

works just like in standard BASIC.

A very restricted IF statement -- you may only compare a
floating point expression with zero, or two strings,
or two simple integers (variables or constants). For
floating points, syntax is:

IF X<0 THEN 100
or IF Z=0 THEN 80
or IF SIN(A*B-C)<0 THEN 200

(more on real expressions later).

The variable must be on the left, For strings, you can
say

PAGE 7

BASIC/S 3.1 Documentation

IF A$<B$ THEN 20
or IF A$=8$ THEN 100

The compare must be in the '<' direction only, or with
'='• You may check whether a string is null via

IF A$="" THEN 200 (for example)
but this is the only time you may test a string against
a constant.

For integers
IF A%=B% THEN 100

or IF A%<B% THEN 50
(and either A% or 8% may be an integer constant, as
in IF A%<72 THEN 200),

*** Note: GOTO, GOSUB, and IF statements MUST
begin the line that they are on. Also, you may follow
an IF statement with more statements on the same line,
but they will be treated as if they were on succeeding
lines. Thus

IF X=0 THEN 20:Y=SQR(Z)

would have the effect of IF X=0 THEN 20 ELSE Y=SQR(Z)
(but BASIC/S does not support ELSE). For compatibility
with standard Microsoft Basic, it is best not to follow
IF statements with anything.

FOR/NEXT

USR

The For/Next loop is implemented for INTEGERS only, You
may code

FOR A%=B% TO C% (spacing important!)

NEXT A%

Constants may be used where B% and C% are indicated,
as long as they are integers (positive, negative, or
zero). Just be sure to use a single space after FOR
and before and after TO. The variable in the NEXT
statement is NOT optional. There is no STEP clause.
FOR/NEXT loops may be (statically) nested.

A single USR call is allowed. It must be
DEFUSR, and the calling address must be
decimal integer constant. Thus:

DEFUSR=-1000

set up by
a simple

Note: There is no VARPTR statement. However, the

P~E8

BASIC/S 3.1 Documentation PAGE 9

addresses of all simple variables in BASIC/Sare always
the same and may be calculated as follows:

REALS If the ascii code for the variable is
A; then the VARPT8 will be
-11535+4* (A-65).

INTEGERS -11406+2*(A-65).
STRINGS -23192+256*(A-65).

Strings are stored a little differently than in Level
II. Each string is allocated 256 bytes, the first of
which contains the length of the string (0 to 255) and
the rest of which contain the string itself. The
Varptr points to the length byte.

Y%=USR(X%)

This causes the routine whose address was defined by a
previous DEFUSR statement to be called. The current
value of XI is loaded into the HL register pair before
the call is made, and on return, YI is given the value
in the HL register pair. Do not call the ROM routine
at 0A9A for this. Any integer variables may be used,
not just XI and YI. Also, a (decimal) integer
constant may be used as the argument to be passed.

SET, RESET, and POINT

Use integers (either variables (followed by I) or
constants) as the arguments. As with most BASIC/S
functions, they may not be used in more complex
expressions. Thus

SET(X%, 20)
Al=POINT (Bl ,Cl)

The latter is the only way to access POINT - it cannot
be invoked in an IF statement.

PEEK and POKE

Exactly as in Level II, except that
the .arguments must be integers -- (constants
or variables). Thus

INP and OUT

A%•PEEK (Ml)
POKE A%,BI
POKE 15360,191
Z%•PEEK (14312)

Syntax here is just like that for PEEK and POKE,
i.e. you may use integer variables or constants
as the arguments (no expressions).

BASIC/S 3,1 Documentation PAGE lf

AND/OR

Al=INP(P%) (input a byte from port Pl and
store in Al)

OUT Pl,VI (output value VI to port Pl)
OUT 255,1
Sl=INP(232)

You may use these two functions in order to calculate
an AND/OR result (for integer variables or const,nts)
and store the answer in an integer variable. Thus

Xl•YI AND 20
Ul•AI OR Bl

CLS Clear the screen

RND

DIM

Random numbers between 0 and 1 may be generated by the
statement X•RND(0), The left hand side may be any real
variable, The argument is not actually required;· you
can simply say X•RND if you like, The statement RANDOM
is also supported, to reseed the random number
generator,

You can DIMension up to 20 arrays in a program to be compiled
with BASIC/S - they can be integer, real or string, as
distinguished by 1, $, etc. The array names may be any
length (up to 255) with every character significant.
ONLY letters A-Z should be used for the array names.
Thus

DIM ARRAY(20,7),ST$(15),NUM%(50)

You may have one or two dimensions for each array - no
more. DO NOT use BASIC keywords in your array names.
Be careful about your available array space - BASIC/S
will tell you if your array space will overlay BASIC/S
data areas or the currently set high memory. It will
also let you know exactly where your array space lies­
if the latter number is FFFF, look out! That means that
your arrays are dimensioned too large (almost certainly).
If this happens, try recompiling with a start address of 56000;
this will give you about 19.75 K of space for your arrays,
as it pu-ts your /CMD file in high memory instead of low.
Still, 19.75K is only enough room for a string array of
dimension 79 (79 * 256 = 20,224). With real and integer
arrays, you can use much larger dimensions.

Syntax for using array elements:
For the most part, you can use your array variables just like
any other variables; and you may always use integer

BASIC/S 3.1 Documentation

constants (as well as variables) for the subscripts).
Thus

READ NUM%(I%)
INPUT ARRAY(7)
PRINT ST$(U%);
A$=LEFT$(ST$(5),NUM%(I%))

The exceptions are as follows:
When an array element is on the left hand side of the
'=' sign, the right hand side MUST be a simple variable
of the same type - no constants or expressions allowed.
Thus ST$(1)="HELtO• is not allowed; you would need to
set H$•"HELLO" and then ST$(1)=H$.
Also, any statement that references an array element
should contain NO numeric constants of any kind, except
for (possibly) subscripts to the array itself.
One exception here is that array elements may be
compared via the IF statement, and the line number
reference will not be misconstrued. So

IF ST$(1)<ST$(U) -rHEN 75
is OK; just be sure to follow the syntax in all other
respects. But something like

LINE INPUTtl,ST$(I%)
or PUT 1,L%(I%)

PAGE 11

won't work as the 'l' will be misunderstood, and translated
to a temporary integer variable, which won't work.

ASSIGNMENT statement:

Following are the allowed forms of the assignment statement.

REAL :

X=Y
X=const
X•-Y

(any var=any other var)
(var=constant value)
(var=-other var)

X•real expression

the IF statement for real
only place where BASIC/Scan handle

A "real expression• is defined as
of the real variables A-Z,

Here (and in
expressions) is the
complex expressions.
any combination
+,-,*,/, ,(,), and
TAN, ATN,LOG, EXP,

the built-in functions SIN, cos,
SQR, and ABS, and up to 4 constants.

Thus:

Y=5*SQR(Z*SIN(2*X+C)), for example.

Be careful with constants - you may only have 4
"active" constants at one time (for each var type),
and this includes not only obvious constants, but
also unary minus signs - thus Z=2*(-X) would have
two constants (1 t would be translated into .2,* (91-X)).
Important note -- if you divide by a
product, be careful. BASIC/S will interpret A/B*C as

BASIC/$ 3.1 Documentation

A/ (B*C) rather than the USUc!l (1\/B) *C. This is due to
the right to left parsing algorithm that is used. Use
parantheses if in doubt, Another point is this: If
you calculate X Y (X to the Yth power), this is done a
little differently than in Level Il -- it is calculated
as EXP(Y*LOG(X)). Since LOG(X) is undefined for X<,,,0,
this will CRASH your BASIC/S /CMD file, whereas BASIC
will normally handle it if it makes sense as a real
number, So if you want to do such a calculation, you
should check for X being 0 or negative.

X"'CSNG(X%)
Builtin conversion function -- since mixed mode
arithmetic is not supported, this function is
needed, May NOT be used in a real expression.
No constants allowed here.

X%=CINT(X) See above,

INTEGERS :

Integer arithmetic is limited to +,-,* and only 2
operands allowed on the right hand side. No builtin
functions for integers. Constants may be used, however.

Thus
X%.,A%*8%
X%.,5-B%

Note that unary minus is not allowed here (for variables) ie
X%=-Y%+Z% is no good, while X%=Z%-Y% ls OK. Constants may be
negative (as in X%=-5+Y%) and of course you may use unary
minus if the right hand side is a single variable, as in X%=-Y%.

STRINGS :

A$:B$
!\$"'"constant"
A$.,B$+C$ (simple concatenation)

Also we have the builtin
string functions ASC, LEN, CHRS, LEFT$, VAL, RIGHT$,
MID$, STR$, and INSTR. Where numeric arguments are
required in the string functions, simple integer
variables or constants must be used - no expressions.
The actual string arguments cannot be constants, but

A$=LEFT$ (X$, 2)

(for example) would be OK.

Also, expressions must be reduced to their simplest
form e.g., concatenation within a function or
function composition is not allowed. Break it down!

Note: The INSTR function differs from the regular
DISK BASIC one in that no starting position may be
specified -- syntax is just N%=INSTR(A$,B$).
However, unlike previous versions of BASIC/S, ALL of

PAGE 1

BASIC/S 3.1 Documentation

B$ is searched for, not just the first character.
MID$ note -- you can use MIO$ on the left hand side

of the= sign, and in that case, you can use either of
the two forms MIO$(A$,Nl)=B$ or MID$(A$,Nl,Ll)•B$
but they will give the same results, i.e. the length of
B$ is used, LI is ignored in the second form. If the
source string (B$) is null, nothing is done.

Note III: The INKEY$ function is implemented, and
must be used in the form: A$=INKEY$ (or B$, etc.).
Also, VAL may be used for integers only; i.e.,

Nl=VAL(A$)

and conversely, STR$ works only on POSITIVE integers
(A$•STR$(NI), where NI is not negative). The
argument to STR$ may be an integer constant as
well.

DISK I/0 statements

Essentially, you have ten disk I/0 buffers available
for use (0-9), all of which may be used for sequential access,
and two (1 and 2) of which may be used for random access. Here
are the specifics:

OPEN

The OPEN statement is essentially that of disk BASIC,
except that the filespec must be a string variable and
not an expression in quotes. Syntax is

OPEN"m•,b,F$<,r>
where m =mode• I,O,R, or E

b • buffer • (0-9) (constant only)
(must be 1 or 2 for direct access)

F$ • filespec (variable only)
r • logical record length (optional -- may be

either an integer constant or an integer
variable).

BASIC/S makes few restrictions on your use of the
disk I/0 statements, so be careful. For example, if
y,u wanted to open a sequential file with an LRECL of
16, you could. However, you would probably be well
advised to stick to direct access files for this!

OPEN•E• is like OPEN"O" except you start out
positioned at the end of the file.

Sequential I/0 is done with the LINE INPUTt and PRINTt
statements. Just specify a buffer number adjacent to the I,
and you are ready to go. only a simple string variable may

be input or output, although PRINTtl,A$; will disable
the carriage return.

PAGE 13

BASIC/S 3.1 Documentation

Random disk I/O is accomplished via the following :

FIELD

You must field your buffer in order
between your strings and the disk file
Syntax is :

to communicate
being accessed.

FIELD l,nn AS A$,mm AS BS, •••

-- the buffer can be 1 or 2, the strings can be any of
A$ thru ZS (no array references allowed here!), and

the numbers 'nn', 'mm' etc must be

LSET

PUT

GET

integer constants (1-255 -- 0 is not allowed). Also you
can't really use multiple FIELD stmts for the same file
-- the second will override the first. Moreover, the
statements to process a random access file must be
statically nested -- i.e. do not GOSUB or GOTO a later
line to FIELD a buffer and then return to do your LSETs
and PUTs, etc. Just OPEN the file, FIELD the buffer,
process it, and CLOSE it, without GOSUBS and GOTOS.
(At least, don't branch anywhere outside the range
of statements between the OPEN and CLOSE stmts).

To place your strings into the buffer prior to being
PUT to the disk, use LSET. Thus

LSET AS=B$ (spacing critical!)

where A$ is one of the strings mentioned in your FIELD
statement. If LEN(B$) is less than that of the field
variable AS, it will be filled out with spac:s in the
buffer. If greater, only the leftmost portion of BS
(for the fielding length of A$) will be in the buffer.

Syntax is PUT b,N% where bis
2) and N% is any integer
record number to be put. The
not optional.

the buffer number (1 or
variable, containing the

record number variable is

As in GET l,R% -- gets the R%th record from the disk
file, and places its contents into the string variables
mentioned in the FIELD statement.

PAGE 14

BASIC/S 3.1 Documentation

LOF The LOF function is implemented and syntax is

Nl•LOF(b)

where b is the buffer number (l or 2 -- must be a
constant). This returns the number of records in the
currently open file with buffer b.

CVI and MKI$

CLOSE

EOF

For convenience in reading and writing integers
from/to direct access files, these functions are
implemented as in TRSDOS. In case you were mystified
as to exactly what they did -- well, if the integer NI
has the 2 byte representation (L,H), then MKI$(NI) is
just CHR$(L)+CHR$(H). CVI just does the exact reverse.
As with most BASIC/S functions, these may be used only
with simple integer/string variables.

Also implemented (completely similarly) are CVS
and MKS$. Since BASIC/S doesn't support double
precision, CVD and MKD$ are not implemented.

There is no global close in BASIC/S -- you must mention
the buffer number. Thus,

CLOSE 5

would close the file with
a file that isn't open,
NOT OPEN'.

buffer numbers. If you close
you will bomb out with 'FILE

This isn't a function as such, it is to be used in a
special form of the IF statement to check for EOF when
inputting from a sequential file. Simply say

IF EOF(b) THEN 288

(or whatever line number) to check for end of file on
buffer b (8-9)

PAGE 15

BASIC/S 3.1 Documentation

BASIC/$ Memory Map

Following is a map of memory from 5200H up to HIGH$, showing
how BASIC/S uses the memory in your TRS-80 {48K):

/CMD file in low mem in high mem

5200 ----------

your /CMD file Array space (20K)

Al00 ----------

This area is always reserved for BASIC/S variables
and DCB's.

D7D8

Free area for your own use (e.g. USR routines).

DAC0 ----------

Array space
{DAC0 to HIGH$)

HIGH$------

/C"1D file

PAGE 1

BASIC/S 3.1 Documentation PAGE 17

--DISCLAIMER OF WARRANTIES & LIMITATIONS OF LIABILITIES --

We have taken great care in preparing this package. We make no expressed
or implied warranty of any kind with regard to this manual or to
BASIC/S. In NO event shall we be liable for incidental or consequential
damage in connection with or arising out of the performance of this
program.

BASIC/S (c)l981 by Bill Stockwell and Quality Software Distributors

All rights reserved. No part of this manual and NONE of the programs
may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by information
storage retrieval system, BBS, etc, Registered owners are entitled to
make copies of the disk for their OWN use only!

Questions should be addressed to:

Bill Stockwell
3700 Wakeforest Dr. # 43
Houston TX 77098
(713) 520-8695
Mnet 70070,320

Bill Stockwell may also be reached on the QSD Sig
on MicroNet, Leave a message to 70001,610 for info.

Published by: Quality Software Distributors
11500 Stemmons Expressway Suite 104
Dallas, Texas 75229

TRS-80 and TRSDOS are registered copyrights of the TANDY CORP.
MOD I and MOD III are also trademarks of the TANDY CORP.
LDOS is a registered trademark of Logical Systems, Inc.
Newdos and Newdos/80 are trademarks of Apparat
Dosplus is a trademark of Micro Systems Software

DE> NOT: B~G-KWP 1i~IS DISK!!

- - BOOiF I~ l/J P IN clrive fiJ --

YOU ONL:Yi NEED ili:O USE iliHIS DISK ONE TIMEI

QSD SPECIAL LOADER BY: KIM WATT

GSD PAOBDCli REGISTRATION FOAM
Product Name

Where Purchased _____________ _

Date Purcha1ed.........:,,...======::,:::::=c.J

SERIAL # ---==-=-=--==--==-=-==-=-- -=--_____::=---=:..=.._:;___ __ _

Your: Name ________________ ,

Adctre11

City, State, Zip -----=------:-::.,,......::::;:-=--::=-=- ===-'.1

Date,_ ______ Type Sy1tem _::;c.:= ~=-~ --'::---=-.1

bASIC/6 - A liASIC CO~PILBk
for Mod I and III

bASIC/S is a BASIC program whicn
com~iles a subset of TRS-80 Disk liasic
into Z80 machine code. The machine code
thus created may be saved on disk as a
command file. The program is easy to
u~e, and may be run under almost ANY Mod
I/III DOS.

Only sim~le expressions and variable
names are allowed, but most of the
features and built-in functions of Level
II are im~lemented, along with the
essential elements of se~uential and
random disk I/0. BASIC/S allows the
following variable names (all single
letters): intergers Al thru ZI, reals
A-z, and strings A$ thru Z$. Also
~resent is an array of reals (called A,
of dimension 204) and a string array
(T$) of dimension 82 or 37 depending on
the placement of your /CMD file.
Multiple statements per line AkE
allowed.

liASIC/S is NOT designed to compile •off
the shelf• software. It is designed to
compile your own code, or software that
you have gone through and •modified• to
be bASIC/S coru~ileable. This is NO
different than other compiler. You must
prepare your file to be com~iled
first... then compile. No run time
~ackage needed, and NO royalty fee to be
paid on compiled programs for re-sale!

Requires a TkS-80(C) Mod I or Mod III
with 48K (repeat ••• 48K), and at least
one disk drive.

THS-80 is a trademark of the TANDY
CORP.

	00a.pdf
	00b.pdf
	00c.pdf
	01b.pdf
	01redo.pdf
	02.pdf
	03b.pdf
	03redo.pdf
	04.pdf
	05.pdf
	06.pdf
	07.pdf
	08.pdf
	09.pdf
	10b.pdf
	10redoandmove.pdf
	11.pdf
	11redoagain.pdf
	11redoandwatchborder.pdf
	12dd.pdf
	12redoagain.pdf
	12redotbig.pdf
	13.pdf
	13redo.pdf
	14.pdf
	14redo.pdf
	14xx.pdf
	15.pdf
	15redot.pdf
	16.pdf
	16b.pdf
	17.pdf
	17redot.pdf
	99.pdf
	BASIC-S Compiler v3.1 (1981)(QSD).pdf
	00a.pdf
	00b.pdf
	00c.pdf
	01b.pdf
	01redo.pdf
	02.pdf
	03b.pdf
	03redo.pdf
	04.pdf
	05.pdf
	06.pdf
	07.pdf
	08.pdf
	09.pdf
	10b.pdf
	10redoandmove.pdf
	11.pdf
	11redoagain.pdf
	11redoandwatchborder.pdf
	12dd.pdf
	12redoagain.pdf
	12redotbig.pdf
	13.pdf
	13redo.pdf
	14.pdf
	14redo.pdf
	14xx.pdf
	15.pdf
	15redot.pdf
	16.pdf
	16b.pdf
	17.pdf
	17redot.pdf
	99.pdf

